где mj - число точек ( xij, yij,) в j -том интервале, а затем вычисляют параметр:
Если F превосходит критическое табличное значение при числах степеней свобода K1=l-2; K2=n-l надежностью P гипотезу о линейном характере усредненной зависимости y от x следует поставить под сомнение [70, 76, 80].
В случае нелинейной корреляции в качестве меры тесноты связи, т.е. меры концентрации экспериментальных точек около усредненных кривых регрессии, применяется корреляционное отношение h y/x для зависимости у от x или h y/x для зависимости x от y.
Корреляционные отношения вычисляются по формулам:
где обозначения, те же, что в приведенных выше выражениях, причем mj’ и l’ имеют тот же смысл для x, какой mJ и l - для у. Корреляционные отношения удовлетворяют неравенствам:
0 £ ç rç £ h y/x £ 1; 0 £ ç rç £ h x/y £ 1;
При отсутствии корреляционной связи r, в, h равны нулю. Поэтому проверка гипотезы о наличии корреляционной связи заключается в
расчете выборочных эмпирических оценок этих характеристик и значимости их отличия от нуля, причем из h у/х = 0 еще не следует, что h x/y =0 [2, 76]. Для криволинейных зависимостей по строение кривых регрессии проводится также методом наименьших квадратов, при расчетах ограничиваются полиномами до третьей степени [76,80].
Уравнение кривой регрессии удобно записывать в виде разложения по ортогональным полиномам П.Л. Чебышева [76]:
y = во× ро(х) + в1× р1(х) +…вvрv(x), где ро(х)=1, р1(х)=(х-` х),
Параметры вj не зависят от степени искомого полинома и определяются по формуле:
(j=0,1….n)
Истинные значения параметров вj с надежностью P лежат в доверительных интервалах:
где tj =t(P,R) из таблиц распределения при числе степеней свободы R=n-j-1,
есть сумма квадратов отклонений опытных точек от расчетных, .
Все измерения предполагаются равноточными и независимыми с нормально распределенными ошибками. При оценке геохимических систем с парагенетическими корреляционными связями применяется метод множественной линейной корреляции для трех-шести компонент, уравнение множественной регрессии которого представляет линеаризированную функцию: , где xi - значения i -ого признака.
Найденное уравнение наилучшим образом, в смысле метода наименьших квадратов, соответствует имеющимся эмпирическим данным. Задача сводится к вычислению коэффициентов регрессии ao,a1,…aR по совокупности N наблюдений переменных x1,x2,…xm и зависимой переменной y. При вычислениях на ЭВМ определяются следующие показатели [44]:
Полиметаллические массивные сульфиды на современном морском дне
Резюме. Полиметаллические колчеданы на
современном морском дне обнаружены в разнообразных тектонических обстановках на
глубине от 3700 до 1500 м от водной поверхности. Эти отложения локализуются в
быстро, средне-, и медленно раздвигающихся ...
Демография Эфиопии
Современная Эфиопия —
слаборазвитое государство в северо-восточной Африке. Граничит на Западе с
Суданом, на юге- с Кенией, на юго-востоке — с Сомали, на востоке — с Сомали и
Джибути, на северо-востоке с Эритреей. Площадь – 1,1 млн. км² ...