Вычисление сумм взаимных произведений отклонений всех переменных
где j = 1, 2, 3,… m; R=1, 2, 3,… m;
2. Вычисление средних для всех переменных
3. Вычисление парных эмпирических коэффициентов корреляции
где j = 1, 2, 3,… m; R=1, 2, 3,… m;
4. Вычисление стандартных отклонений для всех переменных
5. Подбор обратной матрицы парных эмпирических корреляционных коэффициентов, которая при умножении на данную матрицу дает единичную матрицу.
R . R-1 = R-1 .R = E
6. Вычисление коэффициентов регрессии
где Sy - стандартное отклонение зависимой переменной;
Sj - стандартное отклонение J -ой независимой переменной;
rij - парная корреляция i -ой независимой переменной с зависимой
переменной;
rij-1 - обратная корреляция независимых переменных.
7. Вычисление свободного члена
где ` y -среднее значение зависимой переменной y;
` xj - среднее значение j -той независимой переменной.
8. Вычисление множественного коэффициента корреляции
где ê Lê - определитель ковариационной матрицы;
a11 - первый член ковариационной матрицы;
ê L’ê - определитель ковариационной матрицы без первого столбца и первой
строки.
Такова рекомендуемая схема вычислений для оценки парагенетических
связей в многокомпонентных геохимических системах. Для настоящей
работы наиболее интересен случай трех величин: x={xi}, y={yi}, z={zi}.
Рассмотрим зависимости эмпирической регрессии z на x и y. Плоскость регрессии z на (x,y) описывается уравнением:
z-` z =вz/x(x-` x)+ вz/y(y-` y),
где коэффициенты регрессии вz/x, вz/y определяются через коэффициенты, корреляции nap (x,y), (x,z) и (y,z).
;
где Sx , Sy , Sz - эмпирические дисперсии при n результатах. Мерой связи Z и (x,y) служит сводный (множественный) коэффициент корреляции:
0 £ R £ 1.
При R=0 между z и величинами x, y нет линейной корреляционной зависимости (но может быть нелинейная). При R=1 (все точки лежит в плоскости (регрессии) имеет место случай линейной функциональной зависимости величины z от х и у. Для изучения корреляции между двумя компонентами (например х и z после устранения влияния у) можно ввести парциальный (частный) коэффициент корреляции:
Таким образом, изложенные выше по литературным источникам рецепты указывают, что прикладная математика располагает достаточно мощным аппаратом для количественного анализа геохимических систем, и в частности для выявления, оценки и количественного выражения зависимостей между компонентами состава сложных сред.
Главные историко-культурные центры мира
Свет человеческого
разума, пробившийся сквозь тьму 50 веков, дошел до нас в великих руинах -
безмолвных свидетелях былого величия ушедших цивилизаций. Трудно себе
представить, как много на самом деле знали наши далекие предки. Свое пониман ...
Заповедники Казахстана
Деятельность человека
сильно изменила облик природных ландшафтов Казахстана. Особенно сильным
изменениям подверглась живая природа: произошло изреживание растительности,
сокращение ареалов животных и даже гибель многих видов (например, т ...