Вычисление сумм взаимных произведений отклонений всех переменных
где j = 1, 2, 3,… m; 
R=1, 2, 3,… m;
2. Вычисление средних для всех переменных
3. Вычисление парных эмпирических коэффициентов корреляции
где j = 1, 2, 3,… m; R=1, 2, 3,… m;
4. Вычисление стандартных отклонений для всех переменных
5. Подбор обратной матрицы парных эмпирических корреляционных коэффициентов, которая при умножении на данную матрицу дает единичную матрицу.
R . R-1 = R-1 .R = E
6. Вычисление коэффициентов регрессии
где Sy - стандартное отклонение зависимой переменной;
Sj - стандартное отклонение J -ой независимой переменной;
rij - парная корреляция i -ой независимой переменной с зависимой
переменной;
rij-1 - обратная корреляция независимых переменных.
7. Вычисление свободного члена
где ` y -среднее значение зависимой переменной y;
` xj - среднее значение j -той независимой переменной.
8. Вычисление множественного коэффициента корреляции
где ê Lê - определитель ковариационной матрицы;
a11 - первый член ковариационной матрицы;
ê L’ê - определитель ковариационной матрицы без первого столбца и первой
строки.
Такова рекомендуемая схема вычислений для оценки парагенетических
связей в многокомпонентных геохимических системах. Для настоящей
работы наиболее интересен случай трех величин: x={xi}, y={yi}, z={zi}.
Рассмотрим зависимости эмпирической регрессии z на x и y. Плоскость регрессии z на (x,y) описывается уравнением:
z-` z =вz/x(x-` x)+ вz/y(y-` y),
где коэффициенты регрессии вz/x, вz/y определяются через коэффициенты, корреляции nap (x,y), (x,z) и (y,z).
;
где Sx , Sy , Sz - эмпирические дисперсии при n результатах. Мерой связи Z и (x,y) служит сводный (множественный) коэффициент корреляции:
0 £ R £ 1.
При R=0 между z и величинами x, y нет линейной корреляционной зависимости (но может быть нелинейная). При R=1 (все точки лежит в плоскости (регрессии) имеет место случай линейной функциональной зависимости величины z от х и у. Для изучения корреляции между двумя компонентами (например х и z после устранения влияния у) можно ввести парциальный (частный) коэффициент корреляции:
Таким образом, изложенные выше по литературным источникам рецепты указывают, что прикладная математика располагает достаточно мощным аппаратом для количественного анализа геохимических систем, и в частности для выявления, оценки и количественного выражения зависимостей между компонентами состава сложных сред.
Разработка региональной справочной общегеографической карты Смоленской области для Атласа Центра РФ
Разработать проект
общегеографической карты Смоленской области Атласа Центра
РФ. Атлас является справочным по назначению и общегеографическим
по содержанию. Атлас предназначен для широкого круга читателей в качестве
полезного справочного ...
Особенности осушения минеральных переувлажненных почв Нечерноземной зоны с низкой водопроницаемостью
Осушительная мелиорация - важный приём, используемый
для удаления избыточного увлажнения почв, поддержания определённого водного
режима почв, благоприятного для роста и развития растений, пригодного для
успешного проведения сельскохозяйств ...

