При V < VT, считается, что разность d – случайна, т.е. при данном уровне случайных ошибок, значения систематических незначимы. В случае V > VT анализируют выборку на наличие членов (хі-уі) > ` d и исключают из рассмотрения “промахи” по статистике:
, (1.6)
и оценкой x по таблицам для доверительной вероятности 95% в зависимости от n [22]. При n =20 , x £ 62,62.
Оперативная оценка наличия "системы" в парных наблюдениях проводится графически в координатах (x, y).
В геолого-геофизической практике получил распространение метод выявления систематических ошибок, состоящий в определении уравнения линейной регрессии y на x ( x -основные геофизические, y - контрольные геологические измерения) и в оценке существенного отличия коэффициента регрессии и свободного члена от единицы и нуля соответственно [12, 17, 20, 21]. Однако, как показано в [26] уравнение регрессии в общем случае не описывает зависимости между точными результатами измерений, и, следовательно, не может быть использовано для корректного выявления систематических ошибок. Действительно, сравнивая два ряда измерений: основной (Xi) и контрольный (Уi), выполненные без случайных ошибок можно записать:
Уi=a у/х× Xi +b (1.7)
Это уравнение определяет функциональное соотношение между точными результатами измерений и условием отсутствия систематических ошибок является выполнение равенств:
a = 1, b = 0 (1.8)
В случае опробования оба ряда отягощены случайными погрешностями, как основной, так и контрольный. Причем считается, что последний не имеет систематических ошибок. Задача состоит в том, чтобы определить величину и значимость систематических расхождений при заданном уровне случайных ошибок в каждом сравниваемом ряде измерений. В этом случае связь между xi и уi может быть представлена линейным уравнением регрессии:
уi = a у/х× xi + ву/х (1.9)
При этом, если s 2 (x ), s 2( e (Х)), s 2( e (У)) - дисперсии истинных содержаний и ошибок измерений соответственно, то дисперсии результатов измерений, коэффициенты регрессии и корреляции будут равны [27]:
s 2 (х)= s 2 (x )+s 2( e (Х)), s 2 (у)= s 2 (x )+s 2( e (У)),
(1.10)
Откуда получим:
где (1.11)
Из (1.11) следует, что если результаты основного метода содержат случайные ошибки измерения, то ау/х £ a у/х=1, аналогично b у/х=0, ву/х¹ 0 т.е. при отсутствии систематических ошибок в результатах основного метода коэффициенты уравнения регрессии могут отличаться от 1 и 0. Лишь в случае, когда диапазон изменения истинных содержаний достаточно широк, а ошибки измерений незначительны, различие между (1.9) и (1.7) может быть практически незначительным (К(х)< < 1).
В общем случае, для определения коэффициентов (1.9) применяются методы конфлюэнтного анализа [16, 27, 35], позволяющие анализировать априори постулируемые функциональные связи между переменными, в условиях, когда наблюдаются не сами переменные, а случайные величины. Наиболее полно разработаны способы оценки линейного соотношения, из которых интересен для оценки систематических ошибок способ нахождения коэффициентов a и b при наличии дополнительной (по отношению к двум сопоставляемым рядам) информации о характеристиках ошибок измерений [35]. Для этого по экспериментальным данным получают оценки и и проверяют статистическую значимость отличия их от 1 и 0 соответственно. Следуя [27], опишем схему оценки:
Сырьевые ресурсы - глобальная проблема человечества
Современная индустрия, в особенности такие ее отрасли, как
химический синтез, выплавка легких металлов, отличается повышенной
потребностью в энергии, воде и сырье. Чтобы выплавить 1 т алюминия, необходимо
затратить в десятки раз больше во ...
Демографическая проблема в мире
В современную эпоху стремительный рост народонаселения
оказывает возрастающее влияние, как на жизнь отдельных государств, так и на
между-народные отношения в целом.
В современном мире
существует огромное количество проблем, таких как п ...